Introduction to Mathematics and Modeling

lecture 2

Exponentials and logarithms
This week

1. Section 1.5: exponential functions
2. Section 1.6: inverse functions and logarithms

Model 28 circular slide rule by Concise Ltd.

**UNIVERSITY OF TWENTE.
Introduction to Mathematics and Modeling Lecture 2: Exponentials and logarithms**
The inverse function: reverse engineering

- Exactly one arrow departs from every point in D.

$$f: D \rightarrow Y$$

- Points in Y that are not in the range of f are not hit by an arrow.
- Points in the range of f may be hit by more than one arrow.

Observation: If we reverse the direction of the arrows, then the result might not be a function.
The inverse function: reverse engineering

- Exactly one arrow departs from every point in D.
- Points in Y that are not in the range of f are not hit by an arrow.
The inverse function: reverse engineering

- Exactly one arrow departs from every point in D.
- Points in Y that are not in the range of f are not hit by an arrow.
- Points in the range of f may be hit by more than two arrows.
The inverse function: reverse engineering

Observation

If we reverse the direction of the arrows, then the result might not be a function.
A function $f : D \to Y$ is one-to-one if $f(x_1) \neq f(x_2)$ for every x_1 and $x_2 \in D$ with $x_1 \neq x_2$.

\[f : D \to Y \]

D \quad Y

x_1 \quad $f(x_1)$

x_2 \quad $f(x_2)$
One-to-one functions

Definition

A function $f : D \to Y$ is **one-to-one** if $f(x_1) \neq f(x_2)$ for every x_1 and $x_2 \in D$ with $x_1 \neq x_2$.

- This is equivalent with: for all x_1 and $x_2 \in D$ we have: if $f(x_1) = f(x_2)$ then $x_1 = x_2$.
Definition

A function \(f : D \to Y \) is one-to-one if \(f(x_1) \neq f(x_2) \) for every \(x_1 \) and \(x_2 \in D \) with \(x_1 \neq x_2 \).

- This is equivalent with: for all \(x_1 \) and \(x_2 \in D \) we have: if \(f(x_1) = f(x_2) \) then \(x_1 = x_2 \).
- For a one-to-one function every point in \(Y \) is the end point of at most one arrow.
Example

The function \(f(x) = 2x - 1 \) is one-to-one.
Example

The function \(f(x) = 2x - 1 \) is one-to-one.

Suppose \(f(x_1) = f(x_2) \), then

\[
2x_1 - 1 = 2x_2 - 1,
\]
Example

The function $f(x) = 2x - 1$ is one-to-one.

- Suppose $f(x_1) = f(x_2)$, then

\[
2x_1 - 1 = 2x_2 - 1,
\]

\[
2x_1 = 2x_2,
\]
Example

The function \(f(x) = 2x - 1 \) is one-to-one.

- Suppose \(f(x_1) = f(x_2) \), then
 \[
 2x_1 - 1 = 2x_2 - 1, \\
 2x_1 = 2x_2, \\
 x_1 = x_2.
 \]
Example

The function \(f(x) = \frac{2x - 1}{x - 1} \) is one-to-one.
Example

The function \(f(x) = \frac{2x - 1}{x - 1} \) is one-to-one.

- Suppose \(f(x_1) = f(x_2) \), then
 \[
 \frac{2x_1 - 1}{x_1 - 1} = \frac{2x_2 - 1}{x_2 - 1},
 \]
Example

The function \(f(x) = \frac{2x - 1}{x - 1} \) is one-to-one.

Suppose \(f(x_1) = f(x_2) \), then

\[
\frac{2x_1 - 1}{x_1 - 1} = \frac{2x_2 - 1}{x_2 - 1},
\]

\[
(2x_1 - 1)(x_2 - 1) = (2x_2 - 1)(x_1 - 1),
\]
Example

The function \(f(x) = \frac{2x - 1}{x - 1} \) is one-to-one.

Suppose \(f(x_1) = f(x_2) \), then

\[
\frac{2x_1 - 1}{x_1 - 1} = \frac{2x_2 - 1}{x_2 - 1},
\]

\[
(2x_1 - 1)(x_2 - 1) = (2x_2 - 1)(x_1 - 1),
\]

\[
2x_1 x_2 - x_2 - 2x_1 + 1 = 2x_1 x_2 - x_1 - 2x_2 + 1,
\]
Example

The function \(f(x) = \frac{2x - 1}{x - 1} \) is one-to-one.

Suppose \(f(x_1) = f(x_2) \), then

\[
\frac{2x_1 - 1}{x_1 - 1} = \frac{2x_2 - 1}{x_2 - 1},
\]

\[
(2x_1 - 1)(x_2 - 1) = (2x_2 - 1)(x_1 - 1),
\]

\[
2x_1 x_2 - x_2 - 2x_1 + 1 = 2x_1 x_2 - x_1 - 2x_2 + 1,
\]

\[
-x_2 - 2x_1 = -x_1 - 2x_2,
\]
Example

The function \(f(x) = \frac{2x - 1}{x - 1} \) is one-to-one.

- Suppose \(f(x_1) = f(x_2) \), then

\[
\frac{2x_1 - 1}{x_1 - 1} = \frac{2x_2 - 1}{x_2 - 1},
\]

\[
(2x_1 - 1)(x_2 - 1) = (2x_2 - 1)(x_1 - 1),
\]

\[
2x_1 x_2 - x_2 - 2x_1 + 1 = 2x_1 x_2 - x_1 - 2x_2 + 1,
\]

\[
x_2 - 2x_1 = -x_1 - 2x_2,
\]

\[-x_1 = -x_2,
\]
Example

The function \(f(x) = \frac{2x - 1}{x - 1} \) is one-to-one.

Suppose \(f(x_1) = f(x_2) \), then

\[
\frac{2x_1 - 1}{x_1 - 1} = \frac{2x_2 - 1}{x_2 - 1},
\]

\[
(2x_1 - 1)(x_2 - 1) = (2x_2 - 1)(x_1 - 1),
\]

\[
2x_1 x_2 - x_2 - 2x_1 + 1 = 2x_1 x_2 - x_1 - 2x_2 + 1,
\]

\[
-x_2 - 2x_1 = -x_1 - 2x_2,
\]

\[
-x_1 = -x_2,
\]

\[
x_1 = x_2.
\]
If f is a one-to-one function, then a horizontal line intersects the graph of f in at most one point.
Example

The function \(f(x) = 2x - 1 \) is one-to-one.
The function \(f(x) = 2x - 1 \) is one-to-one.

■ The graph of \(f \) satisfies the horizontal line test.
Example

The function \(f(x) = \frac{2x - 1}{x - 1} \) is one-to-one.
Example

The function $f(x) = \frac{2x - 1}{x - 1}$ is one-to-one.

- The graph of f satisfies the horizontal line test.
Theorem

Let \(f : I \to \mathbb{R} \) be a function defined on an interval \(I \). If \(f \) is monotonous, then \(f \) is one-to-one.

\[f(x_1) = f(x_2). \] (*

• If \(x_1 < x_2 \), then \(f(x_1) < f(x_2) \), which contradicts (*).

Conclusion: \(x_1 < x_2 \) is false.

• If \(x_1 > x_2 \), then \(f(x_1) > f(x_2) \), which contradicts (*).

Conclusion: \(x_1 > x_2 \) is false.

• There is only one option left: \(x_1 = x_2 \).
Theorem

Let $f : I \to \mathbb{R}$ be a function defined on an interval I. If f is monotonous, then f is one-to-one.

- Assume that f is an increasing function.

- Assume that f is a decreasing function.
Theorem

Let \(f : I \rightarrow \mathbb{R} \) be a function defined on an interval \(I \). If \(f \) is monotonous, then \(f \) is one-to-one.

- Assume that \(f \) is an increasing function.
- Let \(f(x_1) = f(x_2) \). \((*) \)
Theorem

Let $f : I \rightarrow \mathbb{R}$ be a function defined on an interval I. If f is monotonous, then f is one-to-one.

- Assume that f is an increasing function.
- Let $f(x_1) = f(x_2)$.

 - If $x_1 < x_2$, then $f(x_1) < f(x_2)$, which contradicts (\ast).
 Conclusion: $x_1 < x_2$ is false.
Theorem

Let \(f : I \to \mathbb{R} \) be a function defined on an interval \(I \). If \(f \) is monotonous, then \(f \) is one-to-one.

■ Assume that \(f \) is an increasing function.

■ Let \(f(x_1) = f(x_2) \).

\((*) \)

- If \(x_1 < x_2 \), then \(f(x_1) < f(x_2) \), which contradicts \((*)\).
 Conclusion: \(x_1 < x_2 \) is false.

- If \(x_1 > x_2 \), then \(f(x_1) > f(x_2) \), which contradicts \((*)\).
 Conclusion: \(x_1 > x_2 \) is false.
Monotonous functions

Theorem

Let \(f : I \rightarrow \mathbb{R} \) be a function defined on an interval \(I \). If \(f \) is monotonous, then \(f \) is one-to-one.

- Assume that \(f \) is an increasing function.
- Let \(f(x_1) = f(x_2) \).

\[
\begin{align*}
\bullet & \text{ If } x_1 < x_2, \text{ then } f(x_1) < f(x_2), \text{ which contradicts (*)}. \\
& \text{Conclusion: } x_1 < x_2 \text{ is false.}
\end{align*}
\]

\[
\begin{align*}
\bullet & \text{ If } x_1 > x_2, \text{ then } f(x_1) > f(x_2), \text{ which contradicts (*)}. \\
& \text{Conclusion: } x_1 > x_2 \text{ is false.}
\end{align*}
\]

- There is only one option left: \(x_1 = x_2 \).
Example

The function \(f(x) = 2x - 1 \) is one-to-one.
Example

The function \(f(x) = 2x - 1 \) is one-to-one.

- The graph of \(f \) satisfies the horizontal line test.
Example

The function \(f(x) = 2x^2 - 1 \) is not one-to-one.

Notice that from \(f(x_1) = f(x_2) \) follows: \(x_1^2 = x_2^2 \), which does not imply \(x_1 = x_2 \).
Example

The function \(f(x) = 2x^2 - 1 \) is not one-to-one.

- Notice that from \(f(x_1) = f(x_2) \) follows: \(x_1^2 = x_2^2 \), which does not imply \(x_1 = x_2 \).

- Observe that

\[
\begin{align*}
 f(1) &= 2 \cdot 1^2 - 1 = 1, \\
 f(-1) &= 2 \cdot (-1)^2 - 1 = 1,
\end{align*}
\]

hence \(f(1) = f(-1) \).
The function \(f(x) = 2x^2 - 1 \) is not one-to-one.

- Notice that from \(f(x_1) = f(x_2) \) follows: \(x_1^2 = x_2^2 \), which does not imply \(x_1 = x_2 \).

- Observe that

 \[
 f(1) = 2 \cdot 1^2 - 1 = 1,
 \]
 and

 \[
 f(-1) = 2 \cdot (-1)^2 - 1 = 1,
 \]
 hence \(f(1) = f(-1) \).

- The graph of \(f \) does not satisfy the horizontal line test.
Example

The function \(f(x) = 2x^2 - 1 \) is not one-to-one.

- Notice that from \(f(x_1) = f(x_2) \) follows: \(x_1^2 = x_2^2 \), which does not imply \(x_1 = x_2 \).

- Observe that

 \[f(1) = 2 \cdot 1^2 - 1 = 1, \]

 and

 \[f(-1) = 2 \cdot (-1)^2 - 1 = 1, \]

 hence \(f(1) = f(-1) \).

- The graph of \(f \) does not satisfy the horizontal line test.

- One counterexample suffices.
Theorem

If $f : D \to Y$ is one-to-one, then reversing the arrows yields a function from the range of f to D.

$f : D \to Y$

D x $f(x)$ Y

range(f)
The inverse function

Theorem

If \(f : D \to Y \) is one-to-one, then reversing the arrows yields a function from the range of \(f \) to \(D \).

\[
f : D \to Y
\]

\(x \mapsto y \)

\(D \to \text{range}(f) \)

\(Y \)

This function is called the inverse of \(f \), and is denoted as \(f^{-1} \).
The inverse function

Theorem

If \(f : D \to Y \) is one-to-one, then reversing the arrows yields a function from the range of \(f \) to \(D \).

\[f^{-1} : \text{range}(f) \to D \]

- This function is called the **inverse of** \(f \), and is denoted as \(f^{-1} \).
Finding the inverse function

- If $y = f(x)$, then $x = f^{-1}(y)$.
Finding the inverse function

- If \(y = f(x) \), then \(x = f^{-1}(y) \).
- Finding the inverse means: solve the equation \(y = f(x) \) for \(x \).
Finding the inverse function

- If \(y = f(x) \), then \(x = f^{-1}(y) \).
- Finding the inverse means: solve the equation \(y = f(x) \) for \(x \).

Example

Find the inverse of \(f(x) = 2x - 1 \).
Finding the inverse function

- If \(y = f(x) \), then \(x = f^{-1}(y) \).
- Finding the inverse means: solve the equation \(y = f(x) \) for \(x \).

Example

Find the inverse of \(f(x) = 2x - 1 \).

- Solve \(y = 2x - 1 \) for \(x \):

 \[
 y = 2x - 1,
 \]

\[
\]
Finding the inverse function

- If \(y = f(x) \), then \(x = f^{-1}(y) \).
- Finding the inverse means: solve the equation \(y = f(x) \) for \(x \).

Example

Find the inverse of \(f(x) = 2x - 1 \).

- Solve \(y = 2x - 1 \) for \(x \):

\[
y = 2x - 1,
\]

\[
y + 1 = 2x, \quad +1
\]

We found \(f^{-1}(y) = y + \frac{1}{2} \).

Replace \(y \) by \(x \):

\(f^{-1}(x) = x + \frac{1}{2} \).
Finding the inverse function

- If \(y = f(x) \), then \(x = f^{-1}(y) \).
- Finding the inverse means: solve the equation \(y = f(x) \) for \(x \).

Example

Find the inverse of \(f(x) = 2x - 1 \).

- Solve \(y = 2x - 1 \) for \(x \):

\[
\begin{align*}
y &= 2x - 1, \\
y + 1 &= 2x, \\
\frac{y + 1}{2} &= x,
\end{align*}
\]

We found \(f^{-1}(y) = y + \frac{1}{2} \).

Replace \(y \) by \(x \):

\(f^{-1}(x) = x + \frac{1}{2} \).
Finding the inverse function

- If \(y = f(x) \), then \(x = f^{-1}(y) \).
- Finding the inverse means: solve the equation \(y = f(x) \) for \(x \).

Example

Find the inverse of \(f(x) = 2x - 1 \).

- Solve \(y = 2x - 1 \) for \(x \):

 \[
 y = 2x - 1, \\
 y + 1 = 2x, \\
 \frac{y + 1}{2} = x, \\
 x = \frac{y + 1}{2}.
 \]
Finding the inverse function

- If $y = f(x)$, then $x = f^{-1}(y)$.
- Finding the inverse means: solve the equation $y = f(x)$ for x.

Example

Find the inverse of $f(x) = 2x - 1$.

- Solve $y = 2x - 1$ for x:

 \[
 y = 2x - 1, \\
 y + 1 = 2x, \\
 \frac{y + 1}{2} = x, \\
 x = \frac{y + 1}{2}.
 \]

- We found

 \[
 f^{-1}(y) = \frac{y + 1}{2}.
 \]
Finding the inverse function

- If \(y = f(x) \), then \(x = f^{-1}(y) \).
- Finding the inverse means: solve the equation \(y = f(x) \) for \(x \).

Example

Find the inverse of \(f(x) = 2x - 1 \).

- Solve \(y = 2x - 1 \) for \(x \):
 \[
 y = 2x - 1,
 \]
 \[
 y + 1 = 2x,
 \]
 \[
 \frac{y + 1}{2} = x,
 \]
 \[
 x = \frac{y + 1}{2}.
 \]
- Replace \(y \) by \(x \):
 \[
 f^{-1}(x) = \frac{x + 1}{2}.
 \]
- We found
 \[
 f^{-1}(y) = \frac{y + 1}{2}.
 \]
Example

Find the inverse of \(f(x) = \frac{2x - 1}{x - 1} \).

Solve \(x \) from the equation \(y = f(x) \):

\[y = \frac{2x - 1}{x - 1}, \]

multiply with \(x - 1 \):

\[y(x - 1) = 2x - 1, \]

expand:

\[xy - y = 2x - 1, \]

collect \(x \) and \(y \):

\[xy - 2x = y - 1, \]

factorize:

\[x(y - 2) = y - 1, \]

divide by \(y - 2 \):

\[x = \frac{y - 1}{y - 2}. \]

The inverse of \(f \) is \(f^{-1}(y) = \frac{y - 1}{y - 2}. \)

Replace \(y \) by \(x \):

\[f^{-1}(x) = \frac{x - 1}{x - 2}. \]
Example

Find the inverse of \(f(x) = \frac{2x - 1}{x - 1} \).

Solve \(x \) from the equation \(y = f(x) \):

\[
y = \frac{2x - 1}{x - 1},
\]
Finding the inverse function

Example

Find the inverse of \(f(x) = \frac{2x - 1}{x - 1} \).

- Solve \(x \) from the equation \(y = f(x) \):

 \[
 y = \frac{2x - 1}{x - 1},
 \]

 multiply with \(x - 1 \)

 \[
 y(x - 1) = 2x - 1,
 \]
Finding the inverse function

Example

Find the inverse of \(f(x) = \frac{2x - 1}{x - 1} \).

- Solve \(x \) from the equation \(y = f(x) \):

\[
\begin{align*}
 y &= \frac{2x - 1}{x - 1}, \\
 y(x - 1) &= 2x - 1, \\
 xy - y &= 2x - 1,
\end{align*}
\]

multiply with \(x - 1 \)
expand
Example

Find the inverse of \(f(x) = \frac{2x - 1}{x - 1} \).

- Solve \(x \) from the equation \(y = f(x) \):

\[
y = \frac{2x - 1}{x - 1},
\]

multiply with \(x - 1 \)

\[
y(x - 1) = 2x - 1,
\]

expand

\[
xy - y = 2x - 1,
\]

collect \(x \) and \(y \)

\[
xy - 2x = y - 1,
\]
Example

Find the inverse of \(f(x) = \frac{2x - 1}{x - 1} \).

Solve \(x \) from the equation \(y = f(x) \):

\[
y = \frac{2x - 1}{x - 1},
\]

\[
y(x - 1) = 2x - 1,
\]

\[
xy - y = 2x - 1,
\]

\[
x = \frac{y - 1}{y - 2},
\]

\[
x(y - 2) = y - 1,
\]

Multiplying with \(x - 1 \), expanding, collecting \(x \) and \(y \), and factorizing.
Finding the inverse function

Example

Find the inverse of $f(x) = \frac{2x - 1}{x - 1}$.

- Solve x from the equation $y = f(x)$:

 $y = \frac{2x - 1}{x - 1}$,

 $y(x - 1) = 2x - 1$,

 $xy - y = 2x - 1$,

 $xy - 2x = y - 1$,

 $x(y - 2) = y - 1$,

 $x = \frac{y - 1}{y - 2}$.

The inverse of f is $f^{-1}(y) = \frac{y - 1}{y - 2}$.

Replace y by x:
Example

Find the inverse of \(f(x) = \frac{2x - 1}{x - 1}. \)

- Solve \(x \) from the equation \(y = f(x) \):

 \[
 y = \frac{2x - 1}{x - 1},
 \]

 \[
 y(x - 1) = 2x - 1, \quad \text{multiply with } x - 1
 \]

 \[
 xy - y = 2x - 1, \quad \text{expand}
 \]

 \[
 xy - 2x = y - 1, \quad \text{collect } x \text{ and } y
 \]

 \[
 x(y - 2) = y - 1, \quad \text{factorize}
 \]

 \[
 x = \frac{y - 1}{y - 2}. \quad \text{divide by } y - 2
 \]

- The inverse of \(f \) is

 \[
 f^{-1}(y) = \frac{y - 1}{y - 2}.
 \]
Finding the inverse function

Example

Find the inverse of \(f(x) = \frac{2x - 1}{x - 1} \).

1. Solve \(x \) from the equation \(y = f(x) \):
 \[
y = \frac{2x - 1}{x - 1},
 \]

 \[
y(x - 1) = 2x - 1,
 \]

 \[
 xy - y = 2x - 1,
 \]

 \[
 xy - 2x = y - 1,
 \]

 \[
 x(y - 2) = y - 1,
 \]

 \[
 x = \frac{y - 1}{y - 2}.
 \]

2. The inverse of \(f \) is
 \[
f^{-1}(y) = \frac{y - 1}{y - 2}.
 \]

3. Replace \(y \) by \(x \):
 \[
f^{-1}(x) = \frac{x - 1}{x - 2}.
 \]
The graph of the inverse function

Let \(y = f(x) \). Then \((x, y)\) lies on the graph of \(f \).
The graph of the inverse function

- Let \(y = f(x) \). Then \((x, y)\) lies on the graph of \(f \).
- From \(y = f(x) \) follows \(x = f^{-1}(y) \), so \((y, x)\) lies on the graph of \(f^{-1} \).
Let $y = f(x)$. Then (x, y) lies on the graph of f.

From $y = f(x)$ follows $x = f^{-1}(y)$, so (y, x) lies on the graph of f^{-1}.

The points (x, y) and (y, x) are reflected across the line $y = x$.
Let $y = f(x)$. Then (x, y) lies on the graph of f.

From $y = f(x)$ follows $x = f^{-1}(y)$, so (y, x) lies on the graph of f^{-1}.

The points (x, y) and (y, x) are reflected across the line $y = x$.

The graph of f^{-1} and the graph of f are symmetric with respect to the line $y = x$.

The graph of the inverse function
If $f: D \rightarrow Y$ is not one-to-one, then discard part of D such that the restriction is one-to-one.
If $f : D \to Y$ is not one-to-one, then discard part of D such that the restriction is one-to-one.

The function $f : [0, \infty) \to \mathbb{R}$ defined by $f(x) = x^2$ is one-to-one.
If $f: D \to Y$ is not one-to-one, then discard part of D such that the restriction is one-to-one.

The function $f: [0, \infty) \to \mathbb{R}$ defined by $f(x) = x^2$ is one-to-one.

The inverse of f is the **square root**:

$$f^{-1}(x) = \sqrt{x} \quad \text{for all } x \geq 0.$$
- Draw the graphs of \(f(x) = 2x - 1 \) and its inverse \(f^{-1}(x) = \frac{x + 1}{2} \) in one picture.

Assignment: IMM1 - Tutorial 2.1
Definition

The constant function

\[c: D \rightarrow Y \text{ is the function that assigns } c \text{ to every } x \in D. \]

\[D = \mathbb{R}, \quad Y = \mathbb{R} \]
2.1

Definition

The constant function

$c : D \to Y$ is the function that assigns c to every $x \in D$.

\[D = \mathbb{R}, \quad Y = \mathbb{R} \]

Definition

The identical map \(\text{id} : D \to D \)

is the function that assigns x to every $x \in D$.

\[D = \mathbb{R} \]
Definition

A linear function $f : \mathbb{R} \to \mathbb{R}$ is defined as

$$f(x) = ax + b, \quad a \neq 0.$$
Definition

For every integer n we define

\[x^n = \begin{cases}
 1 & \text{if } n = 0, \\
 x \cdot x \cdot \ldots \cdot x & \text{if is } n \geq 1, \\
 \frac{1}{x^{|n|}} & \text{if is } n < 0.
\]
Polynomials

Definition

- **Polynomials** are functions defined by

 \[a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \]

 where \(a_0, a_1, \ldots, a_n \) are real constants with \(a_n \neq 0 \).

- The constants \(a_0, a_1, \ldots, a_n \) are called **coefficients**.

- The constant \(a_n \) is called the **leading coefficient**.

- The number \(n \) is called the **degree** of the polynomial.
Definition

- **Polynomials** are functions defined by

 \[a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \]

 where \(a_0, a_1, \ldots, a_n \) are real constants with \(a_n \neq 0 \).

- The constants \(a_0, a_1, \ldots, a_n \) are called **coefficients**.

- The constant \(a_n \) is called the **leading coefficient**.

- The number \(n \) is called the **degree** of the polynomial.

- Constant functions (but not the zero-function) are polynomials of degree 0.
Definition

- **Polynomials** are functions defined by
 \[a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \]
 where \(a_0, a_1, \ldots, a_n \) are real constants with \(a_n \neq 0 \).
- The constants \(a_0, a_1, \ldots, a_n \) are called **coefficients**.
- The constant \(a_n \) is called the **leading coefficient**.
- The number \(n \) is called the **degree** of the polynomial.

- Constant functions (but not the zero-function) are polynomials of degree 0.
- The zero function has no leading coefficient, and therefore has no degree.
Definition

- **Polynomials** are functions defined by

 \[a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \]

 where \(a_0, a_1, \ldots, a_n \) are real constants with \(a_n \neq 0 \).

- The constants \(a_0, a_1, \ldots, a_n \) are called **coefficients**.

- The constant \(a_n \) is called the **leading coefficient**.

- The number \(n \) is called the **degree** of the polynomial.

- Constant functions (but not the zero-function) are polynomials of degree 0.

- The zero function has no leading coefficient, and therefore has no degree.

- Linear functions are polynomials of degree 1.
Definition

For every positive integer \(n \) we define the \(\sqrt[n]{x} = x^{\frac{1}{n}} \) as the inverse of \(f(x) = x^n \) where the domain of \(f \) is assumed to be

\[
[0, \infty) \quad \text{if } n \text{ is even}, \\
\mathbb{R} \quad \text{if } n \text{ is odd}.
\]
Definition

A **surd** is an *n*-th root of a rational number that cannot be simplified to a rational number.
A surd is an \(n \)-th root of a rational number that cannot be simplified to a rational number.

- These are all surds: \(\sqrt{2}, \sqrt[3]{2}, \sqrt[3]{5}, \sqrt{\frac{2}{7}}, \sqrt[3]{\frac{1}{2}} \).
- These are not surds: \(\sqrt{4}, 8^{\frac{1}{3}}, \sqrt{\frac{1}{4}} \).
Definition

A **surd** is an n-th root of a rational number that cannot be simplified to a rational number.

- These are all surds: $\sqrt{2}$, $3\frac{1}{2}$, $3\sqrt{5}$, $\sqrt[3]{2}$, $\sqrt[3]{\frac{1}{2}}$.
- These are not surds: $\sqrt{4}$, $8\frac{1}{3}$, $\sqrt{\frac{1}{4}}$.
- Around 820 AD al-Khwarizmi called irrational numbers “inaudible”. This was later translated to the Latin **surdus** (“deaf” or “mute”).

(source: www.mathisfun.com)
Definition

A **surd** is an \(n \)-th root of a rational number that cannot be simplified to a rational number.

- These are all surds: \(\sqrt{2}, \ 3\frac{1}{2}, \ 3\sqrt{5}, \ \sqrt{\frac{2}{7}}, \ 3\sqrt{\frac{1}{2}} \).
- These are not surds: \(\sqrt{4}, \ 8\frac{1}{3}, \ \sqrt{\frac{1}{4}} \).
- Around 820 AD al-Khwarizmi called irrational numbers “inaudible”. This was later translated to the Latin **surdus** (“deaf” or “mute”).

(source: www.mathisfun.com)

Definition

A **radical** is an \(n \)-th root denoted with the **radix symbol** \(\sqrt{\cdot} \).
Surds and radicals

Definition

A **surd** is an \(n\)-th root of a rational number that cannot be simplified to a rational number.

- These are all surds: \(\sqrt{2}, \, 3^{\frac{1}{2}}, \, 3\sqrt{5}, \, \sqrt{\frac{2}{7}}, \, 3^{\frac{1}{2}}\).
- These are not surds: \(\sqrt{4}, \, 8^{\frac{1}{3}}, \, \sqrt{\frac{1}{4}}\).
- Around 820 AD al-Khwarizmi called irrational numbers “inaudible”. This was later translated to the Latin **surdus** (“deaf” or “mute”) (source: www.mathisfun.com)

Definition

A **radical** is an \(n\)-th root denoted with the **radix symbol** \(\sqrt{}\).

- These are radicals: \(\sqrt{3}, \, 3^{\sqrt{8}}, \, 4^{\sqrt{\pi}}\).
- These are not radicals: \(3^{\frac{1}{2}}, \, 8^{\frac{1}{3}}, \, \pi^{1/4}\).
Definition

- *For arbitrary fractions* $\frac{p}{q}$ (with p an integer and q a positive integer) *we define*

 $$x^{\frac{p}{q}} = \left(x^{\frac{1}{q}} \right)^p.$$

- *If* $\alpha \in \mathbb{R}$ *is not a fraction, then* x^α *is defined by limits. This is beyond the scope of this course.*
Definition

- For arbitrary fractions $\frac{p}{q}$ (with p an integer and q a positive integer) we define $x^{\frac{p}{q}} = \left(x^{\frac{1}{q}} \right)^p$.

- If $\alpha \in \mathbb{R}$ is not a fraction, then x^α is defined by limits. This is beyond the scope of this course.

Basic properties

For arbitrary x, y, α and β we have

1. $x^0 = 1$
2. $1^\alpha = 1$
3. $x^\alpha y^\alpha = (xy)^\alpha$
4. $x^{\alpha+\beta} = x^\alpha x^\beta$
5. $x^{\alpha-\beta} = \frac{x^\alpha}{x^\beta}$
6. $(x^\alpha)^\beta = x^{\alpha\beta}$

Some combinations of x, y, α and β may cause problems!
Definition

- For arbitrary fractions \(\frac{p}{q} \) (with \(p \) an integer and \(q \) a positive integer) we define
 \[
 x^{\frac{p}{q}} = \left(x^{\frac{1}{q}}\right)^p.
 \]
- If \(\alpha \in \mathbb{R} \) is not a fraction, then \(x^\alpha \) is defined by limits. This is beyond the scope of this course.

Basic properties

For arbitrary \(x, y, \alpha \) and \(\beta \) we have

1. \(x^0 = 1 \)
2. \(1^\alpha = 1 \)
3. \(x^\alpha y^\alpha = (xy)^\alpha \)
4. \(x^{\alpha+\beta} = x^\alpha x^\beta \)
5. \(x^{\alpha-\beta} = \frac{x^\alpha}{x^\beta} \)
6. \((x^\alpha)^\beta = x^{\alpha\beta} \)
$3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = \sqrt[5]{3^9}$
Examples

- \[3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = \sqrt[5]{3^9} \]

- \[\frac{(\sqrt{11})^3}{\sqrt{11}} = (\sqrt{11})^{3-1} = (\sqrt{11})^2 = 11 \]
Examples

- \(3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = \sqrt[5]{3^9} \)

- \(\frac{(\sqrt{11})^3}{\sqrt{11}} = (\sqrt{11})^{3-1} = (\sqrt{11})^2 = 11 \)

- \((7\sqrt{2})^{\sqrt{2}} = 7^{\frac{1}{2}} \cdot \sqrt{2} = 7^2 = 49 \)
Examples

\[3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = 5\sqrt[5]{3}^9 \]

\[\frac{(\sqrt{11})^3}{\sqrt{11}} = (\sqrt{11})^{3-1} = (\sqrt{11})^2 = 11 \]

\[(7\sqrt{2})^{\sqrt{2}} = 7^{\sqrt{2} \cdot \sqrt{2}} = 7^2 = 49 \]

\[7^\pi \cdot 8^\pi = (7 \cdot 8)^\pi = 56^\pi \]
Examples

- $3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = \sqrt[5]{3^9}$

- $\frac{(\sqrt{11})^3}{\sqrt{11}} = (\sqrt{11})^{3-1} = (\sqrt{11})^2 = 11$

- $(7\sqrt{2})^{\sqrt{2}} = 7^{\sqrt{2} \cdot \sqrt{2}} = 7^2 = 49$

- $7^\pi \cdot 8^\pi = (7 \cdot 8)^\pi = 56^\pi$

- $\left(\frac{4}{9}\right)^{\frac{1}{2}} = \frac{4^\frac{1}{2}}{9^\frac{1}{2}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$
Examples

- $3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = \sqrt[5]{3^9}$

- $\frac{(\sqrt{11})^3}{\sqrt{11}} = (\sqrt{11})^{3-1} = (\sqrt{11})^2 = 11$

- $(7\sqrt{2})^{\sqrt{2}} = 7\sqrt{2} \cdot \sqrt{2} = 7^2 = 49$

- $7^\pi \cdot 8^\pi = (7 \cdot 8)^\pi = 56^\pi$

- $\left(\frac{4}{9}\right)^{\frac{1}{2}} = \left(\frac{4^{\frac{1}{2}}}{9^{\frac{1}{2}}}\right) = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ or $\left(\frac{4}{9}\right)^{\frac{1}{2}} = \sqrt{\frac{4}{9}} = \sqrt{\left(\frac{2}{3}\right)^2} = \frac{2}{3}$
Assignment: IMM1 - Tutorial 2.2
Exponential behaviour: interest on a savings account

If I have 1000 Euro in a savings account and the bank gives 5% interest each year, what will be my savings after 5 years?

<table>
<thead>
<tr>
<th>Year</th>
<th>Savings (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>1000 \cdot (1.05) = 1050.00</td>
</tr>
<tr>
<td>2</td>
<td>1000 \cdot (1.05)^2 = 1102.50</td>
</tr>
<tr>
<td>3</td>
<td>1000 \cdot (1.05)^3 = 1157.63</td>
</tr>
<tr>
<td>4</td>
<td>1000 \cdot (1.05)^4 = 1215.51</td>
</tr>
<tr>
<td>5</td>
<td>1000 \cdot (1.05)^5 = 1267.28</td>
</tr>
</tbody>
</table>

![Graph showing exponential growth of savings over 5 years]
If I have 1000 Euro in a savings account and the bank gives 5% interest each year, what will be my savings after 35 years?

<table>
<thead>
<tr>
<th>Year</th>
<th>Savings (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>$1000 \cdot (1.05)^5 = 1267.28$</td>
</tr>
<tr>
<td>10</td>
<td>$1000 \cdot (1.05)^{10} = 1628.89$</td>
</tr>
<tr>
<td>15</td>
<td>$1000 \cdot (1.05)^{15} = 2078.93$</td>
</tr>
<tr>
<td>20</td>
<td>$1000 \cdot (1.05)^{20} = 2653.3$</td>
</tr>
<tr>
<td>25</td>
<td>$1000 \cdot (1.05)^{25} = 3386.35$</td>
</tr>
<tr>
<td>30</td>
<td>$1000 \cdot (1.05)^{30} = 4321.94$</td>
</tr>
<tr>
<td>35</td>
<td>$1000 \cdot (1.05)^{35} = 5516.02$</td>
</tr>
</tbody>
</table>

![Graph showing exponential growth of savings over 35 years.](image-url)
Definition

Let \(a > 0 \). The **exponential function** with base \(a \) is \(f(x) = a^x \).
Exponential growth and decay

Definition

- If a quantity y depends on time and y is proportional to an exponential function, then we say that y grows exponentially.
- If the base is less than 1 we say that y decays exponentially.

- the human population (annual growth percentage $\approx 1.14\%$),
- carbon dating (the half-life of ^{14}C is approximately 5730 years),
- compound interest,
- Moore’s law: the number of transistors on integrated circuits doubles approximately every two years.

Exponential growth and decay

If y grows exponentially, then there are constants a and y_0 such that

$$y(x) = y_0 a^x.$$
Rule of 70

Let y be a quantity that grows exponentially with a growth percentage $r\%$ per time unit. If r is small, the doubling time is approximately $\frac{70}{r}$ time units.
Rule of 70

Let y be a quantity that grows exponentially with a growth percentage $r\%$ per time unit. If r is small, the doubling time is approximately $\frac{70}{r}$ time units.

If a capital grows with compound interest, where the interest rate is 5% per year, then the capital is doubled in $\frac{70}{5} \approx 14$ years.
Rule of 70

Let y be a quantity that grows exponentially with a growth percentage $r\%$ per time unit. If r is small, the doubling time is approximately $\frac{70}{r}$ time units.

- If a capital grows with compound interest, where the interest rate is 5% per year, then the capital is doubled in $\frac{70}{5} \approx 14$ years.
- In the example on slide 3.2 we saw that the capital, starting with 1000.– Euro, after 15 years is 2078.93 Euro.
Rule of 70

Let y be a quantity that grows exponentially with a growth percentage $r\%$ per time unit. If r is small, the doubling time is approximately $\frac{70}{r}$ time units.

- If a capital grows with compound interest, where the interest rate is 5% per year, then the capital is doubled in $\frac{70}{5} \approx 14$ years.
- In the example on slide 3.2 we saw that the capital, starting with 1000.– Euro, after 15 years is 2078.93 Euro.
- The human population grows exponentially with a growth percentage of 1.14% per year, so the population doubles about every sixty years: $\frac{70}{1.14} \approx 61.4035$.
The natural exponential function

- The derivative of an exponential function is proportional to the function itself.
The natural exponential function

- The derivative of an exponential function is proportional to the function itself.
- If \(f(x) = a^x \) then \(f'(x) = K a^x \) for some constant \(K \).

\[e \approx 2.71828182845904523536028747135266249775724709... \]

The function \(e^x \) is called the natural exponential function.
The derivative of an exponential function is proportional to the function itself.

If \(f(x) = a^x \) then \(f'(x) = K a^x \) for some constant \(K \).

There is one specific base value for which \(K = 1 \). This base is called \(e \) and is approximately

\[
e \approx 2.71828182845904523536028747135266249775725190...
\]
The natural exponential function

- The derivative of an exponential function is proportional to the function itself.
- If \(f(x) = a^x \) then \(f'(x) = K a^x \) for some constant \(K \).
- There is one specific base value for which \(K = 1 \). This base is called \(e \) and is approximately
 \[
 e \approx 2.71828182845904523536028747135266249775724709 \ldots
 \]
- The function \(e^x \) is called the natural exponential function.
Let $a > 0$, then there is a constant $c \in \mathbb{R}$ such that

$$a = e^c.$$
Let \(a > 0 \), then there is a constant \(c \in \mathbb{R} \) such that
\[
a = e^c.
\]

For every \(x \) the following holds:
\[
a^x = (e^c)^x = e^{cx}
\]
Exponential growth and decay

- Let $a > 0$, then there is a constant $c \in \mathbb{R}$ such that
 $$a = e^c.$$
- For every x the following holds:
 $$a^x = (e^c)^x = e^{cx}$$

Exponential growth and decay

If y grows exponentially, then there are constants c and y_0 such that

$$y(x) = y_0 e^{cx}.$$
Exponential growth and decay

Let $a > 0$, then there is a constant $c \in \mathbb{R}$ such that
\[a = e^c. \]

For every x the following holds:
\[a^x = (e^c)^x = e^{cx}. \]

If y grows exponentially, then there are constants c and y_0 such that
\[y(x) = y_0 e^{cx}. \]

- If $c > 0$, then $a > 1$ hence y is exponentially growing, and c is called the growth rate.
- If $c < 0$, then $a < 1$ hence y is exponentially decaying, and c is called the decay rate.
- The constant y_0 is equal to $y(0)$, and is called the initial value.
Definition

For an exponentially decaying quantity y the **half-life** is defined as the time t_h such that y has reduced to half the original amount at $t = 0$, in other words:

$$y(t_h) = \frac{1}{2} y(0).$$
Definition

For an exponentially decaying quantity \(y \) the **half-life** \(t_h \) is defined as the time such that \(y \) has reduced to half the original amount at \(t = 0 \), in other words:

\[
y(t_h) = \frac{1}{2} y(0).
\]

- Let \(y(t) = y_0 e^{ct} \). From the definition follows

\[
y_0 e^{ct_h} = \frac{1}{2} y_0 e^{c\cdot0} = \frac{1}{2} y_0 \quad \Rightarrow \quad e^{ct_h} = \frac{1}{2} \quad \Rightarrow \quad ct_h \approx -0.6931.
\]
Definition

For an exponentially decaying quantity y the **half-life** is defined as the time t_h such that y has reduced to half the original amount at $t = 0$, in other words:

$$y(t_h) = \frac{1}{2} y(0).$$

- Let $y(t) = y_0 e^{ct}$. From the definition follows

$$y_0 e^{ct_h} = \frac{1}{2} y_0 e^{c \cdot 0} = \frac{1}{2} y_0 \Rightarrow e^{ct_h} = \frac{1}{2} \Rightarrow ct_h \approx -0.6931.$$

- Then for arbitrary t we have

$$y(t + t_h) = y_0 e^{c(t + t_h)} = y_0 e^{ct + ct_h} = y_0 e^{ct} \cdot e^{ct_h} = \frac{1}{2} y(t).$$
Definition

For an exponentially decaying quantity y the **half-life** is defined as the time t_h such that y has reduced to half the original amount at $t = 0$, in other words:

$$y(t_h) = \frac{1}{2} y(0).$$

- Let $y(t) = y_0 e^{ct}$. From the definition follows
 $$y_0 e^{ct_h} = \frac{1}{2} y_0 e^{c \cdot 0} = \frac{1}{2} y_0 \Rightarrow e^{ct_h} = \frac{1}{2} \Rightarrow ct_h \approx -0.6931.$$

- Then for arbitrary t we have
 $$y(t + t_h) = y_0 e^{c(t+t_h)} = y_0 e^{ct+ct_h} = y_0 e^{ct} \cdot e^{ct_h} = \frac{1}{2} y(t).$$

Theorem

An exponentially decaying quantity reduces to half the original amount over every period of time that lasts t_h time units.
Exercises

- Show that an exponentially decaying quantity y satisfies the following equation:

 $$y(t) = y_0 \left(\frac{1}{2}\right)^{t/t_h},$$

 where y_0 is the initial value and t_h is the half-life.

Assignment: IMM1 - Tutorial 2.3
Definition

The logarithm with base \(a\) is the inverse of the exponential function with base \(a\):

\[y = a^x \iff x = \log_a y \]
Logarithms are exponents

\[R^+ = (0, \infty) \]

\[
\begin{align*}
\log_2 1 &= 0 \quad \text{because} \quad 2^0 = 1, \\
\log_2 2 &= 1 \quad \text{because} \quad 2^1 = 2, \\
\log_2 4 &= 2 \quad \text{because} \quad 2^2 = 4, \\
\log_{10} 1000 &= 3 \quad \text{because} \quad 10^3 = 1000, \\
\log_3 81 &= 4 \quad \text{because} \quad 3^4 = 81, \\
\log_9 81 &= 2 \quad \text{because} \quad 9^2 = 81, \\
\log_2 .25 &= -2 \quad \text{because} \quad 2^{-2} = \frac{1}{4} = .25.
\end{align*}
\]
The graph of $y = \log_a x$ is obtained by reflecting the graph of $y = a^x$ across the diagonal line $y = x$.
Logarithmic laws

- \(\log_a 1 = 0 \)
Logarithmic laws

- \(\log_a 1 = 0 \)
- \(\log_a a = 1 \)
Logarithmic laws

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a (x y) = \log_a x + \log_a y$
Logarithmic laws

- \(\log_a 1 = 0 \)
- \(\log_a a = 1 \)
- \(\log_a (xy) = \log_a x + \log_a y \)
- \(\log_a \frac{x}{y} = \log_a x - \log_a y \)
Logarithmic laws

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a (x y) = \log_a x + \log_a y$
- $\log_a \frac{x}{y} = \log_a x - \log_a y$
- $\log_a \frac{1}{y} = -\log_a y$
Logarithmic laws

- \(\log_a 1 = 0 \)
- \(\log_a a = 1 \)
- \(\log_a (xy) = \log_a x + \log_a y \)
- \(\log_a \frac{x}{y} = \log_a x - \log_a y \)
- \(\log_a \frac{1}{y} = -\log_a y \)
- \(\log_a (x^p) = p \log_a x \)
Proof of the Summation Rule

Summation rule

\[\log_a (x y) = \log_a x + \log_a y. \]
Proof of the Summation Rule

Summation rule

\[\log_a (x y) = \log_a x + \log_a y. \]

- Define

 \[u = \log_a x \quad \text{and} \quad v = \log_a y. \]
Proof of the Summation Rule

Summation rule

\[
\log_a(x y) = \log_a x + \log_a y.
\]

- Define

 \[u = \log_a x \quad \text{and} \quad v = \log_a y. \]

- From the definition of the logarithm with base \(a \) follows

 \[a^u = x \quad \text{and} \quad a^v = y. \]
Proof of the Summation Rule

Summation rule

\[\log_a(x y) = \log_a x + \log_a y. \]

- Define
 \[u = \log_a x \quad \text{and} \quad v = \log_a y. \]
- From the definition of the logarithm with base \(a\) follows
 \[a^u = x \quad \text{and} \quad a^v = y. \]
- Then
 \[a^{u+v} = a^u a^v = xy. \]
Proof of the Summation Rule

Summation rule

\[\log_a(x \cdot y) = \log_a x + \log_a y. \]

- Define

 \[u = \log_a x \quad \text{and} \quad v = \log_a y. \]

- From the definition of the logarithm with base \(a \) follows

 \[a^u = x \quad \text{and} \quad a^v = y. \]

- Then

 \[a^{u+v} = a^u a^v = xy. \]

- This implies

 \[\log_a(x \cdot y) = u + v = \log_a x + \log_a y. \]
Transformation rule

We can write any base-a logarithm in terms of a base-b logarithm:

$$\log_a x = \frac{\log_b x}{\log_b a}$$
Transformation rule

We can write any base-\(a \) logarithm in terms of a base-\(b \) logarithm:

\[\log_a x = \frac{\log_b x}{\log_b a} \]

Proof

\[y = \log_a x \quad \implies \quad a^y = x \]
Transformation rule

We can write any base-\(a\) logarithm in terms of a base-\(b\) logarithm:

\[
\log_a x = \frac{\log_b x}{\log_b a}
\]

Proof

\[
y = \log_a x \implies a^y = x
\]

\[
\implies \log_b a^y = \log_b x
\]
Transformation rule

We can write any base-a logarithm in terms of a base-b logarithm:

$$
\log_a x = \frac{\log_b x}{\log_b a}
$$

Proof

$$
y = \log_a x \quad \implies \quad a^y = x
$$

$$
\implies \quad \log_b a^y = \log_b x
$$

$$
\implies \quad y \log_b a = \log_b x
$$
Transformation rule

We can write any base-a logarithm in terms of a base-b logarithm:

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Proof

$$y = \log_a x \quad \implies \quad a^y = x$$

$$\implies \quad \log_b a^y = \log_b x$$

$$\implies \quad y \log_b a = \log_b x$$

$$\implies \quad y = \frac{\log_b x}{\log_b a}$$
Transformation rule

We can write any base-a logarithm in terms of a base-b logarithm:

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Proof

$$y = \log_a x \implies a^y = x$$

$$\implies \log_b a^y = \log_b x$$

$$\implies y \log_b a = \log_b x$$

$$\implies y = \frac{\log_b x}{\log_b a}$$

Observation

Every logarithm is a scaled version of any other logarithm.
Base change for logarithms

\[
\log_2 81 = \frac{\log_3 81}{\log_3 2} = \frac{\log_3 (3^4)}{\log_3 2} = \frac{4 \log_3 3}{\log_3 2} = \frac{4}{\log_3 2}
\]
Base change for logarithms

- $\log_2 81 = \frac{\log_3 81}{\log_3 2} = \frac{\log_3 (3^4)}{\log_3 2} = \frac{4 \log_3 3}{\log_3 2} = \frac{4}{\log_3 2}$

- $\log_5 1024 = \frac{\log_2 1024}{\log_2 5} = \frac{\log_2 (2^{10})}{\log_2 5} = \frac{10}{\log_2 5}$
Base change for logarithms

- \[\log_2 81 = \frac{\log_3 81}{\log_3 2} = \frac{\log_3 (3^4)}{\log_3 2} = \frac{4 \log_3 3}{\log_3 2} = \frac{4}{\log_3 2} \]

- \[\log_5 1024 = \frac{\log_2 1024}{\log_2 5} = \frac{\log_2 (2^{10})}{\log_2 5} = \frac{10}{\log_2 5} \]

- \[\log_6 3 = \frac{\log_7 3}{\log_7 6} \]
We write the logarithm with base 10 as $\log x$.

The logarithm with base e is called the natural logarithm.

Every logarithm can be rewritten as a natural logarithm:

$$\log_a x = \frac{\log x}{\log a}.$$

For example:

$$\log x = \ln x \ln 10 \approx 0.434 \ln x.$$
- We write the logarithm with base 10 as \(\log x \).
- We write the logarithm with base \(e = 2.71828... \) as \(\ln x \).
Logarithms with special base

- We write the logarithm with base 10 as $\log x$.
- We write the logarithm with base $e = 2.71828...$ as $\ln x$.
- The logarithm with base e is called the natural logarithm.
We write the logarithm with base 10 as $\log x$.

We write the logarithm with base $e = 2.71828...$ as $\ln x$.

The logarithm with base e is called the **natural logarithm**.

Every logarithm can be rewritten as a natural logarithm:

$$\log_a x = \frac{\log_e x}{\log_e a} = \frac{\ln x}{\ln a}.$$
- We write the logarithm with base 10 as \(\log x \).

- We write the logarithm with base \(e = 2.71828... \) as \(\ln x \).

- The logarithm with base \(e \) is called the **natural logarithm**.

- Every logarithm can be rewritten as a natural logarithm:

 \[
 \log_a x = \frac{\log_e x}{\log_e a} = \frac{\ln x}{\ln a}.
 \]

- For example:

 \[
 \log x = \frac{\ln x}{\ln 10} \approx 0.434 \ln x.
 \]
Definition

For an exponentially decaying quantity y with decay rate $-k$ (with $k > 0$), the **half-life** is the time t_h such that y has reduced to half the initial amount, in other words:

$$y(t_h) = \frac{1}{2} y(0).$$
For an exponentially decaying quantity y with decay rate $-k$ (with $k > 0$), the **half-life** is the time t_h such that y has reduced to half the initial amount, in other words:

$$y(t_h) = \frac{1}{2} y(0).$$

- Write $y(t) = y_0 e^{-kt}$.
For an exponentially decaying quantity y with decay rate $-k$ (with $k > 0$), the **half-life** is the time t_h such that y has reduced to half the initial amount, in other words:

$$y(t_h) = \frac{1}{2} y(0).$$

- Write $y(t) = y_0 e^{-kt}$.
- From slide 34 (with $c = -k$):

 $$e^{-kt_h} = \frac{1}{2} \implies e^{kt_h} = 2 \implies kt_h = \ln 2 \approx 0.6931.$$
For an exponentially decaying quantity y with decay rate $-k$ (with $k > 0$), the **half-life** is the time t_h such that y has reduced to half the initial amount, in other words:

$$y(t_h) = \frac{1}{2} y(0).$$

- Write $y(t) = y_0 e^{-kt}$.
- From slide 34 (with $c = -k$):
 \[
e^{-kt_h} = \frac{1}{2} \implies e^{kt_h} = 2 \implies kt_h = \ln 2 \approx 0.6931.
 \]
- The relation between decay rate and half-life is described by the following equations:

\[
\begin{align*}
t_h &= \frac{\ln 2}{k} \\
k &= \frac{\ln 2}{t_h}
\end{align*}
\]
Assignment: IMM1 - Tutorial 2.4